Development of a Unique Curve for Thermal Neutron Self-Shielding Factors in Spherical Scattering Materials

J. Salgado, I. F. Gonçalves, E. Martinho

Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-198 Sacavém, Portugal

Abstract – The introduction of an appropriate dimensionless variable, which takes into account, simultaneously, the material absorbing and scattering properties, can express the thermal neutron self-shielding factor of spherical samples by a unique curve. It is shown that the differences between the values calculated by Blaauw and those of the proposed curve are < 1.5%.

1. Introduction

It has been recognized that thermal neutron scattering inside samples has important effects in neutron absorption experiments ¹⁻⁴. Its importance may be reflected in the thermal neutron self-shielding factor G_{th} . For a given total cross-section, the scattering of neutron increases the self-shielding factor since a pure scatterer in an isotropic neutron field has no self-shielding².

This paper uses the results published by $Blaauw^2$ and proposes a unique curve that which describes conveniently the behaviour of the thermal neutron self-shielding factor.

2. Blaauw method for calculation of self-shielding factors

Blaauw² computes the self-shielding factor G_{th} of a spherical sample using the Stewart's formula⁵ by a two step calculation. First of all, he computes the self-shielding factor without scattering, G_{th}^{0} , using the macroscopic total scattering cross-section Σ_{t} instead of the macroscopic absorption scattering cross-section Σ_{a} as though the sample did not scatter neutrons. Stewart used only Σ_{a} to calculate G_{th}^{0} . Then Blaauw uses the Stewart's formula to correct for scattering effects. Accordingly, the Blaauw values were calculated using the expressions

$$G_{th}^{0} = \frac{3}{X_{t}^{3}} \left[\frac{X_{t}^{2}}{2} - 1 + (1 + X_{t}) e^{-X_{t}} \right]$$

and

$$G_{th} = \frac{G_{th}^{0}}{1 - \frac{\sum_{s}}{\sum_{t}} \left(1 - G_{th}^{0}\right)},$$
(2)

(1)

where

$$X_t = 2 R \Sigma_t$$

R = sphere's radius

 Σ_s = macroscopic scattering cross-section.

3. Results and discussion

Blaauw² presents sets of thermal neutron self-shielding factor curves plotted as a function of $X_a = 2\Sigma_a R$ and $X_s = 2\Sigma_s R$. G_{th} have been calculated over a wide range of X_a and X_s values between 0 and 10. Figure 1 presents some of these values for X_a varying between 0 and 10 and X_s =0, 2, 5, 10. It demonstrates that G_{th} decreases with X_a at constant X_s and with X_s at constant X_a .

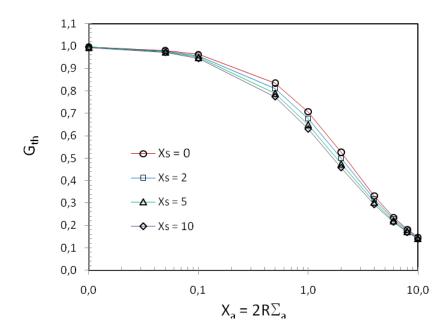


Fig. 1 – Self-shielding factor calculated by Blaauw, plotted as a function of X_a for different values of X_s

In this paper it is proposed to introduce a dimensionless variable, which takes into account, simultaneously, both macroscopic absorption and scattering cross sections. The variable is:

$$X = 2 R \Sigma_t \left(\frac{\Sigma_a}{\Sigma_t}\right)^x = 2 R \Sigma_t \left(1 - \frac{\Sigma_s}{\Sigma_t}\right)^x,$$
(3)

where x is a parameter to be adjusted to the calculated or measured values in order to transform the set of curves into a unique curve. The expression between parenthesis takes into account scattering effects: for a pure scatterer X = 0. The results of Blaauw plotted against X are shown in Figures 2, where x = 0.85.

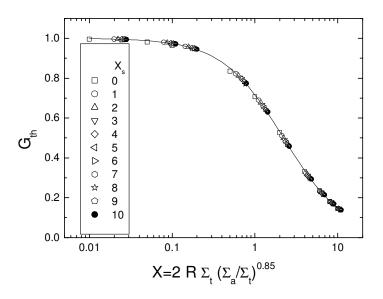


Fig. 2 – Self-shielding factors calculated by Blaauw as a function of *X*, for *x*=0.85, and the adjusted curve ($A_1 = 1$; $A_2 = 0$; $z_0 = 2.227 \pm 0.004$; $p = 1.160 \pm 0.002$; $r^2 = 0.9999$).

A sigmoid curve:

$$G_{th} = \frac{A_1 - A_2}{1 - \left(\frac{X}{X_0}\right)^p} + A_2$$
(4)

was adjusted to the calculated values. The results show that a unique curve can take into account, simultaneously, the dependence of G_{th} on the absorption and scattering cross-sections. The mean and maximum differences between the adjusted curve proposed in this work and the values calculated by Blaauw are 0.2% and 1.5%, respectively.

Figure 3 compares G_{th} calculated by Blaauw with values calculated by Martinho, Salgado, and Gonçalves⁶ using the MCNP code for materials with very different absorption and scattering cross sections. A good agreement is obtained between the Blaauw and our values.

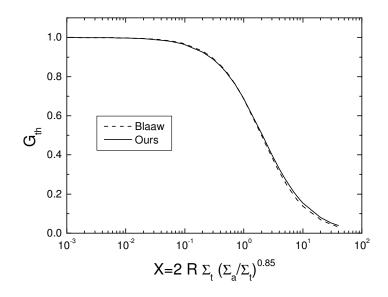


Fig. 3 – Comparison of G_{th} calculated by Blaauw and by Martinho, Salgado and Gonçalves

4. Conclusions

The results presented in this work show that a unique curve can be adjusted to the calculated (or experimental) values of the thermal neutron self-shielding factor for spherical samples. This is obtained through the introduction of a dimensionless variable that takes into account, simultaneously, the scattering and absorption properties of the samples. The differences between the calculated values and those of the proposed curve are < 1.5%.

References

1. M. BLAAUW, The confusing issue of the neutron capture cross-section to use in thermal neutron self-shielding computations, *Nucl. Instrum. and Methods*, A356, 403 (1995).

2. M. BLAAUW, The derivation and proper use of Stewart's formula for thermal neutron self-shielding in scattering media, Nucl. Sci. Eng., **124**, 431 (1996).

3. J. R. D. COPLEY, Scattering effects within an absorbing sphere immersed in a field of neutrons, *Nucl. Instrum. and Methods*, A307, 389 (1991).

4. M. C. LOPES, Sensitivity of self-powered neutron detectors to thermal and epithermal neutrons with multiple collision treatment. PhD Thesis, University of Coimbra (1991) (in Portuguese).

5. J. C. STEWART and P. F. ZWEIFEL, A Review of self-shielding effects in the absorption of neutrons, in Proc. 2nd Int. Conf. Peaceful Uses of Atomic Energy, New York, 16, 650, United Nations (1959).

6. E. MARTINHO, J. SALGADO, I.F. GONÇALVES, "Universal Curve of the Thermal Neutron Self-Shielding Factor in Foils, Wires, Spheres and Cylinders", J. Radioanal. Nucl. Chem. 261, 637 (2004).